

London Electronics Limited

Thorncote Road, Near Sandy, Bedfordshire SG19 1PU Tel +44(0)1767626444 Fax +44(0)1767626446 www.london-electronics.com help@london-electronics.com

Panel mount Counter / Rate Meter MAXIIINT4-C

Installation \& Operating Manual

Easy setup

\checkmark Accepts NPN, PNP, contact closure, 24VDC
\checkmark Display = 3, 4, 5 or 6 digits (configurable)
\checkmark Optional Output 4-20mA / 0-10V isolated
\checkmark Optional Alarm output $=2$ or 4 relays
\checkmark Optional Comms Output $=$ RS232 or RS485
\checkmark 110-230V AC or 11-30V DC power

Caution: There is a risk of electrical shock if this instrument is not properly installed

Caution: Risk of danger: Read the whole manual before you install this meter

Warranty

We warrant our products against defects in materials or workmanship for a period of three (3) years from the date of purchase.

In the event of a defect during the warranty period, the unit should be returned, freight (and all duties and taxes) prepaid by the Buyer to the authorised distributor from where the unit was purchased.

The Distributor, at its option, will repair or replace the defective unit. The unit will be returned to the Buyer with freight charges prepaid by the distributor.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from:

1. Improper or inadequate maintenance by the buyer.
2. Unauthorised modification or misuse.
3. Operation outside the environmental specification of the product.
4. Mishandling or abuse.

The warranty set forth above is exclusive and no other warranty, whether written or oral is expressed or implied. We specifically disclaim the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES

The remedies provided herein are the buyer's sole and exclusive remedies.
In no event shall we be liable for direct, indirect, incidental or consequential damages (including loss of profits) whether based on contract, tort or any other legal theory.
Warranty 2
Warnings 4
Introduction 5
General Description 6
Panel mounting \& Installation - Class II 7
Notes 8
Notes 9
WiringAdvice 10
Connections 11
Installation hints for best performance 12-13
Application Notes 14
Display Brightness 15
Input Signal Configuration 16
Input Signal Configuration guide 17
Display Modes 18
Factory Defaults 19
Simple Rate mode 20-21
Period Mode 22-23
Totalising Modes 24-25
Production Rate mode 26-27
Quadrature mode 28-29
Logic Input functions 30
Logic Input connections and front buttons 31
Notes 32-33
Last Digit rounding 34
Scale Factor adjustment 35
Offset Adjustment 36
Menu Timeout adjustment 37
Reverse / Mirror display setting 38
Bootup Routine choices 39
Language selection for user interface 40
Multi Memory MEM option 41
Error Codes 42
Output Options - installing 43
WEEE 44
Equipment Specifications 45
Record of Revisions 46
Declaration of Conformity 47
Separate manuals for options
Alarm option settings
Analogue output option settingsSerial output option settingsSee Analogue manual *Real Time Clock setting
See Serial manual *See Serial manual *

* Need a manual urgently?
You can download manuals from our website.

Warnings

Please carefully read this manual and all warnings. Install the meter ONLY when you are sure that you've covered all aspects.

Where the product is intended for "UL" installations, removal or addition of option boards is not permitted.

Check that the model number and supply voltage suit your application before you install the meter.

Connect the meter according to current IEE regulations, IEC61010 \&
NFPA:70 National Electric Code in USA.

This meter is for Installation class II service only. This means it has exposed electrical and power terminals. You must install it in a suitable fire enclosure which will also protect users from electric shock

We designed this meter for Pollution-Degree 2 environments only.

Power supplies to this equipment must have anti-surge (T) fuses rated at 400 mA for 230 V supply, 400 mA for 110 V supply or 2 A for DC supplies in the range $11-30 \mathrm{VDC}$. Only Siba fuses in series 189500, cULus listed according to file \#E167295 are accepted for this service under the terms of UL listing. A switch or circuit breaker, clearly marked as a disconnecting device, must be included close to the installation.

Don't touch any circuitry after you have connected the meter, because there may be lethal voltages on the circuit board.

Only adjust on-board switches or connections with the power turned off

Make sure all screw terminals are tight before you switch the meter on.

Only clean the meter's front with a soft damp cloth. Only lightly dampen with water. Do not use any other solvents. The behind-panel case may be cleaned with a dry cloth only, use no liquid or solvent on it.
\qquad Don't assume anything. Always double check. If in doubt, ask someone who is QUALIFIED to assist you in the subject.

Introduction

Please contact us if you need help, if you have a complaint, or if you have suggestions to help us improve our products or services.

If you contact us about a product you already have, please tell us the full model number and serial number, so that we can give you accurate and fast help.

This product has a 3 year warranty. We will put right or replace any meter which is faulty because of bad workmanship or materials. This warranty does not cover damage caused by misuse or accident.

If you return a unit for repair, please include a detailed description of the problem, and the name of a contact who we can refer to for any questions. Please mark for the attention of the QA Department.

IMPORTANT

If this equipment is important to your process, you may want to buy a spare to cover possible failure or accidental damage in the future.

This is because during factory shutdown periods, you may have to to wait several weeks for an equivalent replacement, or we may have no stock at the time you urgently need it.

You may also need to pay extra carriage charges if you want a fast, guaranteed courier service. Warranty repairs or replacements are usually returned with a standard courier service.

We do not offer compensation for losses caused by failure of this instrument.
If you do not agree with these conditions, please return this item in unused, condition, in its original packaging and we will refund the purchase price, excluding any carriage paid.

We thought you'd prefer to know about possible delays and extra charges now, rather than during a panic. Aspare unit could help to avoid these issues.

We always try to improve our products and services, so these may change over time. You should keep this manual safely, because future manuals, for new designs, may not describe this product accurately.

We believe these instructions are accurate, and that we have competently designed and manufactured the product, but please let us know if you find any errors.

General Description

This series of meters accepts industrial sensors to allow various physical measurements to be made, such a weight, temperature, pressure, humidity etc. Different models are available for different sensor types.

The main function of this series is to give a numeric readout of the variable being monitored. Most models include an excitation power output, to power the sensor directly.

Various optional output modules are also available to give alarm relay outputs, analogue output or digital communications, or any combination of these options.

Meters are programmed using front panel pushbuttons. The buttons may be locked with a rear switch.

Meters have two power supply options : 100-240 VAC or 11-30VDC
These meters are designed to mount into a protective enclosure which will protect users from contact with power and signal wiring.

These units must be installed fully assembled, and must be installed according to local electrical installation rules. When properly installed, they provide ingress protection to IP65 / NMA4X from the front

Safety

Caution: There is a risk of electrical
shock if this instrument is not properly installed

Caution: Risk of danger: Read the whole manual before you install this meter

Obey all safety warnings in this manual, and install the meter according to local wiring and installation regulations. Failure to follow these guidelines may cause damage to the meter, connected equipment, or may be harmful to personnel.

Any moving mechanical device controlled by this equipment must have suitable access guards to prevent injury to personnel if the meter should fail.

Panel Mounting and Installation - Class II

Install these meters in a suitable protective electrical control enclosure according to local wiring regulations. See specifications for maximum allowable temperature in enclosure. Allow adequate air circulation.

Securing into the panel

Re-fit the screw clamp assemblies and tighten the screws to firmly clamp the meter in place.

Ventilation

There should be sufficient ventilation in the enclosure to ensure that the meter's case is always kept to less than 60C.

Meter Spacing.

Meters should be spaced apart sufficiently to allow a free flow of ventilation air around the meters, such that no part of the case will exceed 60C

Notes

Notes

Wiring Advice

This meter uses detachable screw terminal connectors. Refer to the wiring diagram on the following page for the correct positioning of each wire.

The conductors you use must be suitable for the meter's temperature, current and voltage rating, which is broadly described as follows:-

Cable Temperature Rating

All cables must be rated for operation up to 90C continuous.

Cable gauge and screw tightness

The connectors on this instrument can accept conductors up to 16 gauge AWG / 1.5mm² c.s.a. The minimum cross sectional area shall be 22 gauge AWG / $0.5 \mathrm{~mm}^{2}$. Tighten screw terminals to $7.0 \mathrm{lb} /$ in torque $/ 0.8 \mathrm{Nm}$ torque.

Cable insulation voltage rating

Cables shall have an insulation voltage rating of at least 380 V continuous.

Wire preparation:

We recommend multi-strand wire, because it withstands vibration better than single strand cable. Pull the wire firmly after you make the connection to confirm it is tight.

Use screened cable for all signal and control wiring and connect the screen to earth at the destination end only. Route signal cabling away from power cabling and relay switching cabling, to avoid electrical noise interference.

Connections

Installation hints for best performance

This section offers several suggestions which will help you get the best performance from your measurement system.

Some sensors generate comparitively small signals which can easily be corrupted by the potentially high level of electrical noise which can be created by electrical machinery such as motors, welding systems, discharge lighting, AC power inverters and solenoids. These steps will ensure you get the best possible performance from your system.

1. Use good quality screened signal cable, with twisted pairs. Belden 8777 NH , Belden 9503 and AlphaWire 6010C are good choices, available from many electrical distributors.
2. If you are using multi-pair twisted cable, each pair should be dedicated to a single display as shown opposite, for maximum noise immunity.This will ensure that any electrical noise induced in the cable is properly cancelled. Mixing destinations carelessly amongst the twisted pairs can actually worsen noise performance.
3. The cable should be routed away from noisy wiring and devices such as power feeds from inverters, discharge-lighting cables, welder cabling etc, and should preferrably be routed in a dedicated low voltage signalling/instrumentation conduit or cable tray.
4. Screened cable should be earthed at the display end only.
5. All wires and screens coming out of the screened cable should be kept as short as possible to minimise pickup of noise.
6. If you are using barriers, you should earth your screen as shown below, paying particular care that you do not earth both ends of any run of of cable.

When using multi-core screened cable to connect several displays to several sensors, please be sure to use one twisted pair for each display and sensor.
Do NOT use a wire from one pair for signal positive and a wire from another pair for signal negative, as this will prevent the twisted cables form cancelling any induced electrical noise, and can couple noise from one channel to another.
Displays

Clean earth P

Sensors

Application Notes

Display Brightness

You can adjust the display brightness at any time, provided the display is locked.

Did you know, we make this display in two brightness versions?
Standard brightness for use inside, and Daylight Viewing for use outside in direct sunlight. The Daylight Viewing version has suffix -DLV in its part number.

Input signal configuration

Each of the display's 4 inputs can be configured to accept different types of input signals, using the procedure below....

Press to scroll through the available signal type choices and press OK to select.

Display shows input signal type choices...

PUL5.D[DC pulses from 5 to 60V
IMDUCT Passive inductive sensors
PLL5.A[AC signals up to 60V
 signal loading choices and press OK to select.

Press to scroll through the available debounce choices and press OK to select.
 then press OK to accept.

Input signal configuration guide

This table tells you which settings to choose for each input signal type. The sensor should be connected to the display according to the connection diagram page.

Sensor family	Input Signal Type	Input signal loading	Input de-bounce
Contact closure	PLLL5.0[MPM	DEM. OM
NPN	PLLL5.0[MPM	DGM. OFF
PNP/ Push-pull	PUL5. 0 [PMP	DGM. OFF
TTL	PLLS. $5[$	MPM	DGM. OFF
CMOS	PUL5. 0 [PMP	DBM. OFF
Passive coil	IMDILT	PMP	DGM. OFF
AC Tacho	PULS. AE	PMP	DGM. OFF

Excitation Output: 24 VDC nominal rated at 60 mA , to power sensors (standard) 10 V DC at 120 mA Max (optional), 5 V DC at 30 mA max (optional)

Signal I/P \& Excitation

Signal I/P \& Excitation

Display Modes

You can choose from eleven basic display modes, some of which have extra sub-modes.

The LED above the Set 2 button will illuminate if your display is in one of the totalising modes, otherwise it is off.

Factory Defaults

You can return the display to its factory default conditions whenever you wish. If you do so, you will permanently loose all your settings and will need to start from the beginning again.

The calibration Audit Counter will NOT be reset, there is no way provided to reset this value, as it is intended as a secure record to indicate whether changes have been made to the display since it was last calibrated..

Calibration audit number

Your display includes a non-resettable counter which increments each time you make a change to the display's calibration. This is useful if you want to check whether a display has been altered since it was last calibrated.

The Calibration audit number starts at CRL CI up to CRL FF allowing up to 255 alterations to be recorded. Whenever you want to check the calibration audit number, press and hold the 2 outer buttons (Set1 +Alarms) for more than 3 seconds.

Simple Rate Mode

Rate mode is ideal for showing instantaneous speed, RPM, frequency, production rate, flow rate etc. For production rate showing the true number of items produced in the last hour, consider using our 'Production Rate Mode' method, which is ideal for production which is erratic or has periods of widely differing production rate.

DISP will appear, prompting you to enter a display value, which will correspond to the frequency you entered. Use Digit, Up and Down buttons to set, and press OK to accept.
You can move the decimal point during setting by pressing the UP button for a few seconds, then repeatedly press to shift the position.

RUV. $O Q$ will appear, prompting you to enter a number of readings to average over, from 00 to 99 . The bigger the number, the smoother will be the display, but response to change will be slower.

DEL 03 will appear, prompting you to enter a delay time in seconds, so that if no pulses are received within this time, the display will revert to showing 0

Application notes - Rate Mode

RPM Measurements
We can accept any number of pulses per rotation, from 1 upwards.

Frequency Measurements

Ideal for the precision measurement of generator or inverter grid frequency.

A simple step down transformer can be used to drop the line voltage down to a level suitable for the display.

5 V to 30 V AC is ideal.

Set FRED. $I M=1$
Set DISP $=1.000$
Set Rlv. 04
Set DEL $0 \exists$

Flow rate Measurements

Accepts pulses from turbine flowmeters, positive displacement flowmeters.

Has flexible scaling to suit any relationship between pulses per unit volume.

Example 143 pulses per litre, show litres per minute

Input 1

litres/min
Set FRED. IM $=2.3833$
Set DISP $=60.000$
Set RUG. 04
Set DEL 03

Period Mode

Rate mode is ideal for showing instantaneous speed, RPM, frequency, production rate, flow rate etc. For production rate showing the true number of items produced in the last hour, consider using our 'Binned Rate' method, which is ideal for production which is erratic or has periods of widely differing production rate.

DISP will appear, prompting you to enter a display value, which will correspond to the period in milliseconds you entered. Use Digit, Up and Down buttons to set, and press OK to accept.
You can move the decimal point during setting by pressing the UP button for a few seconds, then repeatedly press to shift the position.

DEL 03 will appear, prompting you to enter a delay time in seconds, so that if no pulses are received during this time, the display will revert to 0

Bake timer

The period mode measures the time between the falling edges of Input 1, and updates at each edge. If we set "PER. IN" = 1 and "DISP" $=1.000$ we will be able to measure mS to 3 decimal places.

Totalising Modes

There are several useful totalising modes available, which use 1 or more of the display's logic input ports. The total will be stored on loss of power, and will be restored when power is returned to the display.

> Press to scroll through the available mode choices. Choose from these modes (described opposite) TOTRL, GATED.T, HMU.D, ㄹIM. U.D.,

Totalising modes - application notes

The 8 totalising modes are ideal for counting pulses, where 1 pulse $=1$ item, or the total can be scaled, for example to show total flow of liquid, where 1 pulse may represent a certain volume of liquid according to the relationship between "PLLSIN" and "DISP"

TOTRL

Signal I/P \& Excitation
Totaliser (simple)
Pulses on input 1 are counted and scaled.

GRIED.T

Gated Totaliser

Pulses on input 1 are counted and scaled, provided Input 2 is low. When input 2 is held high, pulses on Input 1 are ignored.

IIMU.D

Signal I/P \& Excitation

1 input, Up/Down totaliser

Pulses on input 1 are counted and scaled.
When input 2 is held high, pulses on Input 1 are added.
When input 2 is held low, pulses on Input 1 are subtracted.

בIM. U.D. בIM. U.U. 4 URO 4 4 낸NNN

Multi input, Up/Down totaliser

2 in u.d. $=$ Count up on input 1 , count down on input 2
2in u.u. $=$ Count up on input1, count up on input 2
4 in u.d. $=$ Count up on input1\&2, count down on input $3 \& 4$
4uuuu = Count up on input1, 2,3 and 4
4dddd = Count down on input1, 2,3 and 4

Production rate Mode

In this mode four inputs are available, two can add to give a combined total, and two can subtract to give combined rejects. This mode of rate measurement is ideal for showing real production rates over longer periods, for example showing items per hour, for the previous hour, updated every 15 seconds, 5 minutes, or whatever best suits your process.

Application notes for Production rate Mode

1. Choose an averaging time, in seconds, you want to use for computing your production rate.

For example if you want to average over 45 minutes, your averaging time will be 2700 seconds.

We need to calculate an update time for your display, we will have up to 200 samples available in your averaging period.

Update time $=2700 / 200=13.5$
Round this up to the nearest whole number.
This is set in the variable bin. $\mathbf{t}=14$
Set bin.cnt $=\mathbf{2 0 0}$
This means that your display will update every 14 seconds in this case.

```
NB If your averaging time is less than 3 minutes, please use the formula
    Update time = averaging time/20, round up to nearest whole number = bin.t
    Set bin.cnt = 20
```

2. We now need to set a scale factor so that your display reads correctly in items per hour, per minute or per second.

The scale factor settings will be...
For items per second = SCALE = 1/bin.t
For items per minute $=$ SCALE $=60 /$ bin. t
For items per hour = SCALE $=3600 /$ bin.. t
For items per shift = SCALE $=28800 /$ bin.t
For items per day $=$ SCALE $=86400 /$ bin.t

For an online calculator to choose the best settings for you, please see https://tinyurl.com/47ndhcm7

Quadrature Mode

The quadrature mode allows you to scale a count and increase or decrease the value according to the sequencing of two pulses which are 90 degrees out of phase. This mode is ideal for measuring distance in pay-out/feed-in cable systems, or direction in rotary systems.

DISP will appear, prompting you to enter a display value, which will correspond to the number of input pulses you entered. Use Digit, Up and Down buttons to set, and press OK to accept.
You can move the decimal point during setting by pressing the UP button for a few seconds, then repeatedly press to shift the position. A negative value will give down counting.

PRESET will appear, prompting you to enter a reset value. The display will revert to this value whenever it is reset. Often used to count down from the preset to 0 .

PR. LORD will appear, prompting you to enter a value, if required. You can preload a count number here. This value will disappear if you reset the display.

Quadrature mode - application notes

In a quadrature sensor, the two incoming pulses overlap. Pulses to input 1 will arrive before or after pulses to input 2, depending on the direction of movement. This is achieved by staggering the trigger zones for sensor A and B. They must overlap, so that one will lead the other in one direction, and vice-versa. Trigger zones on large rotating wheels can be bolt heads or holes. In small engular encoders, the trigger zones are normally etched into a thin disc or are photographically produced to make light and dark areas.

Sensor A triggers before sensor B
Sensor B triggers before sensor A

In the simplified arrangement shown above, we get 4 pulses per revolution, because we have 4 pairs of triggers. The angular resolution we get with this arrangement is 90 degrees. Some sensors have 1024 pulses per revoltution, giving 0.35 degree resolution, but there are many different arrangements available. Our scheme above would be typical in cable laying applications, where it is more important to count revolutions of the drum than to know its absolute angle. The trigger zones can also be arranged in a straight line instead of around a circumference, to create a sensor for linear displacement.

Please be sure to check that the sensor's maximum output frequency is kept to less than 10000 pulses per second.

QURE

Quadrature counter

Pulses on input 1 are counted and scaled, with directional information decided by detecting whether pulses for Input 2 arrive before or after pulses for Input 1

Logic input functions

The three contact closure inputs on the rear of the meter have default functions which are:-
Contact closure $1=$ Tare
Contact closure 2 = Peak/Valley display
Contact closure 3 = Reset
You can re-assign these to include :HOLD, Nett/Gross value display, Memory page address 1,2 or 4 (only if Multi-memory MEM option is installed)

[^0]
Logic input connections and front buttons

The previous page explained how to select the functions of the 3 logic inputs. You can connect remote contact closures or open NPN collectors to activate these logic inputs.

The logic input provides a 5V DC signal. When you connect this to common, a current of 1 mA will flow. Because this is a small signal, we recommend you use switches with gold plated contacts, or self cleaning contacts, for best long term reliability.

The logic inputs are not galvanically isolated from the input signal.
The logic inputs are only activated when the lockout switch is $\mathrm{ON} \longrightarrow$

Normally open (disables front panel Tare, Peak/Valley and Reset buttons)

Normally closed (this enables front panel Tare, Peak Valley and Reset buttons also) Or simply link

NPN (could be opto-isolators if you need the logic control lines to be galvanically isolated from the input signal.)

TARE = \quad| Tares display to 0. Often used in weighing systems to zero a display prior |
| :--- |
| to making a measurement. Net weight is shown once tared. When a |
| display has been tared the small LED above the Set 1 button will be |
| illuminated. |

PU $=\quad$| Peak/Valley toggle. Allows you to view the maximum and minimum values |
| :--- |
| which have been displayed since last reset. 0\% LED illuminates when |
| showing valley, 100% LED illuminates when showing peak. |

R5T = Reset. This clears any tare, peak, valley, alarm latch
HOLD = Freezes the displayed value for as long as the Hold input is closed
MET. GRO = Allows you to toggle between Nett and Gross values on the display

PA. 1 .. $4=$ Page Addresses, if MEM option is installed.

Notes

Last Digit rounding up by 1, 2, 5, 10, 20 or 50

You can adjust the way the display rounds up, which is useful if you want to display a very large number, but do not want jitter on the last digit.

The display can be set to round up to the nearest 1 (no rounding) $2,5,10,20$ or 50

Scale Factor adjustment

After you have calibrated your meter, you can use the SCALE feature to make fine adjustments to calibration, without affecting the calibration itself.

Example

Changing volume units of measure from litres to Imperial gallons

You could also use the SCALE to convert your readout from litres to imperial gallons, without affecting the calibration. Simply set SCALE $=0.220$ and your meter which was calibrated in litres will now read in imperial gallons.

You may want to adjust an offset value also, see separate OFFSET page for this feature.

Offset adjustment

After you have calibrated your meter, you can use the OFFSET feature to make fine additions or subtractions to the reading, without affecting the calibration itself.

You may want to adjust a SCALE FACTOR value also, without affecting calibration. See the separate SCALE page for this feature.

Menu timeout adjustment

The display has a default timeout of 60 seconds, to allow you sufficient time to refer to the manual between key operations.

You can make this period shorter, if you wish, once you become more familiar with the setup method.

Reverse Display function (mirror image)

If you need to be able to see a reflection of the display in a mirror or other reflective surface, for example in a simple heads-up system, or for drivers reversing into a bay, using mirrors only, you can set the display to show as a mirror image.

Example of normal display format displaying the number 876543

Example of Mirror Reverse display format displaying the number 876543

Bootup routine choices

When you switch on your meter, it can be set to power up with 3 possible summary message combinations.

The choices are:-
BOOT [= Segment test, followed by a full summary of software revision, calibration audit number, model number, installed options.

BOOT 1 = Segment test followed by model number (Default)

BOOT 2 = No summary, meter displays the measurement value immmediately power is applied.

BOOT \exists = All segments illuminate permanently, until a button is pressed

Language Selection for user interface

You can select English or French menu prompts.

Multi-Program Memory option (Rate mode only)

The three contact closure inputs on the rear of the meter may be used to call up between 1 to 7 additional meter setup memories (pages), if the MEM option has been installed. This allows you to save up to 8 complete sets of independent calibrations, alarm settings, analogue output settings and serial comms settings.

First decide how many memory pages you want, as this will determine how many logic inputs you will need to use for the addressing. Logic inputs not required for Page Addressing can be used for other functions such as Tare, Reset, Display Hold, Peak/Valley display.

If you have used all 3 logic inputs for Page Addressing, you can still use the meter's front panel buttons to perform Tare, Reset and peak/Valley view.

See "Contact Closure Input Functions" page for CC.1, CC.2, CC. 3 and COP settings
Total number of pages Logic Inputs required for addressing

1
21 Set CC. $1=$ PA. 1
3 or 4
5 to 8

2 Set CC. 1 = PA. 1, Set CC. 2 = PA. 2
3 Set CC. 1 = PA. 1 , Set CC. 2 = PA. 2 , Set CC. 3 = PA. 4

1. Set lockout switches OFF, and set page address to 0 or unplug the logic connector.
2. Set the copy instruction to [OP. I in page address 0 (found after you set CC3).
3. Press all 4 buttons together, display shows DEF5. M
4. Press the Up arrow to change display to DEF5. y and press OK.
5. If you want all channels to share a common setting, eg calibration, do that setting now.
6. When you want to do separate settings for each channel, set COP. 0

Programming and recalling individual pages

Plug the logic input connector back in, if you removed it earlier. Select a page address using the switch combinations shown below, wired to the Logic Input connector ...

Page address 0
Page address 1
Page address 2
Page address 3
Page address 4
Page address 5
Page address 6
Page address 7

All logic inputs open
CC. 1 closed to Common
CC. 2 closed to Common
CC. 1 and CC. 2 closed to Common
CC. 4 closed to Common
CC. 1 and CC. 3 closed to Common
CC. 2 and CC. 3 closed to Common

All logic inputs closed to Common

Perform the settings you require, according to the pages in this manual. Do this for all page addresses required. Then put the lockout switch in its ON position. Now, if you select a page address, the meter will briefly confirm the chosen page address on screen, and will then function according to the settings you programmed for that address.

Error codes and fault finding

--LR--

1. Under Range. The meter is being asked to display a value which is more negative than its limit of -199999
2. Over Range. The meter is being asked to display a value which is higher than its limit of 999999

These fault codes could be displayed because the signal scale factor has been set too large or because the input frequency is too high.
3. Display is reading much higher than you expect and may also be erratic. This could be caused by contact bounce if you are using a contact closure input - be sure that the contact debounce is enabled DEME. OM
4. Total is not saved on power-down in a DC powered totaliser.

This could be caused by converting a DC powered INT2-P, INT2-L, INT2-S etc to an INT2-C. If you have converted one of these models to INT2-C, simply by changing the input board, you will find that total is not stored at power-down. You will need to fit a power-down control module, part number 9122-0401 to the display control board.

How to install option boards

0
Where the product is intended for "UL" installations removal or addition of option boards is not permitted.

If you want to open your meter to install or modify option boards, follow these steps...

1) Switch off power to the meter and unplug all connectors.
2) Unclip the front bezel. This is easier if you squeeze the top and bottom of the case, near the front.
3) Remove the small screws shown in the diagram. If the meter doesn't yet have an output option board, the top screw may not yet be fitted.
4) Slide the electronic boards out throught the front of the case. You can easily separate the upper option board from the main board. We strongly suggest that you use anti-static precautions to prevent damage to the semiconductors.

The board assemblies will look something like this...

The analogue output and RS232 or RS422 plug-in option boards are fixed to the upper option board with white plastic pillars. You must apply a firm force when fitting or removing these options.

Always be careful to connect the pins to sockets accurately. When reassembling, make sure option boards are firmly fixed to the upper option board. When the boards are replaced in the case, secure them again with the two small black screws.

Waste Electrical Electronic Equipment (WEEE)

In Europe, this equipment must be disposed of in accordance with European Parliamentary Directive 2002/96/EC

This directive encourages recycling and the reduction of waste materials in the environment.

This means it must be sent to an approved recycling plant if you want to dispose of it.
It must not be thrown away with general rubbish.

If you are unable to dispose of this item locally, you may send it to us for recycling.

Conditions:

1. We will only accept items of our manufacture.
2. You must pay for the transport of the goods to us.
3. We will only accept items if they include a signed declaration by an authorised person in your organisation, stating that :-
i. The item is safe to handle and has no contaminants which may be harmful to health.
ii. You wish us to dispose of or destroy the item(s)

Equipment Specifications

Bezel size	72 mm high by 144 mm wide
Panel Cutout	67.5 mm high by 138 mm wide
Case Depth	150 mm including connectors
Weight	450 grammes
Case Material	Black polycarbonate
Connectors	Detachable Screw Terminal connectors
Environmental	Storage Temperature range -20 to +70 C , non condensing Operating temperature range 0 to 50 C , non condensing Front sealed IP65. Optional cover SPC4 for IP67
Power	100-240 VAC, 45 to 60 Hz or 11-30 VDC optional
Burden	10VA maximum
Input Signals (4x)	Contact closures, with debounce
	NPN and PNP proximity sensors (47kilohm pullup/down)
	24 V logic pulses from PLCs
	AC tachometer inputs
	100 mV passive Inductance pickup (on Input 1 only)
Frequency Range	$0-40 \mathrm{kHz}$ for total, 0-100 kHz on Rate,
	9.5 kHz for quadrature absolute limit (38000 edges/sec)
Accuracy (rate/frequ)	+/- 0.05\% of range, quartz crystal reference
	+/-20 ppm/Degree Celsius temperature coefficient
	Allow 30 minutes after switch-on, for thermal stabilisation.
Excitation voltage	24 VDC nominal rated at 60 mA , to power sensors (standard)
	10 V DC at $120 \mathrm{~mA} \mathrm{Max} \mathrm{(optional)}$
	5 V DC at 30 mA max (optional)
Averaging / smoothing	Selectable averaging time constant of 0 to 25 seconds.
	Production rate monitoring is adjustable and can be averaged over a full day.
Memory	Totals and settings saved in 10 year non-volatile memory.
Display update rate	3 readings per second for rate, 10 readings per second for total
Display Range (max)	-199999 to 999999
Plug-In Output Options	
Details are presented in e nications options, availab	ach individual manual for the analogue, alarm and serial commufrom our website, or supplied with the option itself.

Record of Revisions

1 May 2016
20 Sept 2022

INT4 series Released
Added UKCA certification. Amended URL for Production Rate mode helper

Declaration of UK \& CE Conformity

c

Declaration Reference : INTUITIVE Mk4 Issue Date
Products Covered Title
: 20 September 2022
: INTUITIVE Mk4 series
: DOC-INTUITIVE4

We hereby self-certify that the design and manufacture of this product conforms with the UKCA and CE standards, by complying with the directives and standards below.

Electrical Equipment (Safety) Regulations, 2016 and amendments
Low Voltage Directive 2014/35/EU
BS EN 61010-1 : 2010 +A1 : 2019
Electromagnetic Compatibility Regulations, 2016 and amendments
EMC Directive 2014/30/EU
EN 61326-1: 2013
Immunity for equipment intended to be used in an industrial electromagnetic environment.
Maximum errors of 1% of dynamic range are permitted.
Instrument must recover automatically from disturbance.
Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations, 2012 and amendments
RoHS2 directive incorporating RoHS3 Amendment 2015/863/EU
EN IEC 63000: 2018

Conditions

The meters are permitted a worst case error of 1% of A/D range during electro-magnetic disturbance, and must recover automatically when disturbance ceases without the need for human intervention, such as resetting, power-down etc.

The meters covered by this certificate must be installed in adherence to the following conditions :-

Signal cabling shall be routed separately to power carrying cabling (includes relay output wiring)
All signal cabling shall be screened. The screen shall only be terminated to the power earth terminal at the meter end of the cable.

Declared as true and correct, for and on behalf of London Electronics Ltd.

We design and manufacture a wide range of standard and custom monitoring and control equipment.

All our UK manufactured products have a 3 year warranty.

Real-Time Production-Line Displays

Large Digital Displays sealed IP65

Bargraph Displays

Signal Transmitters / Isolators

[^0]: * Only available if the Multi-memory MEM option is installed

