
# **London Electronics Limited**

Thomcote Road, Near Sandy, Bedfordshire SG19 1PU
Tel +44(0)1767 626444 Fax +44(0)1767 626446
www.london-electronics.com help@london-electronics.com

Quick guide for Anybus subnet with Serial Displays



Connection details and general information In addition to standard manuals



Revision: 4

# Warnings

To ensure the IP rating of this display, all fastening screws must be fitted according to instructions. Failure to do so will void the warranty offered on this product. Any lost / broken fixings need to be reported to the manufacturer so as replacements can be costed and sent. The liability for installation lies with the installer, London Electronics Limited takes no responsibility for death, injury, accident or effect for poor / incorrect installation. London Electronics Limited have quoted to supply the display items and mountings only, a full stability report, risk assessment and structural report should be undertaken by the installer prior to installing the products.

Please carefully read this manual and all warnings. Install the display ONLY when you are sure that you've covered all aspects.



Where the product is intended for "UL" installations, removal or addition of option boards is not permitted.



Check that the model number and supply voltage suit your application before you install the display.



Connect the display according to current IEE regulations, IEC61010 & NFPA:70 National Electric Code in USA.

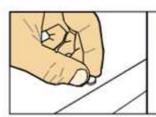


Don't touch any circuitry after you have connected the display, because there may be lethal voltages on the circuit board.



Do not apply power to the display if its case is open.




Only adjust on-board switches or connections with the power turned off



Make sure all screw terminals are tight before you switch the meter on.



Only clean the display's case and window with a soft damp cloth. Only lightly dampen with water. Do not use any other solvents.



## Rear case screws - please note

The rear panel is held in place with finger-screws, which only need to be gently tightened.

Do not use tools to tighten or loosen the screws, as this could cause damage to the internal threads.

Safety First ......Don't assume anything...... Always double check. If in doubt, ask someone who is QUALIFIED to assist you in the subject.

# Contents

| Content                              | Page |
|--------------------------------------|------|
| Section 1: Serial Slave Display      | 4    |
| Anybus Registers to Write            | 5    |
| Display Example                      | 6    |
| Display Settings                     | 10   |
| Wiring Diagram – Anybus RS485 Subnet | 11   |

>

# Section 1 Serial Slave Display

# Anybus Registers to Write

Using the provided configuration file & Display Settings.

The provided example configuration file offers the ability to write to two displays, the first with address 01 and the second with address 02. The following registers to write in the Anybus module for each addressed display are;

| Display<br>Address | Registers                                                                      |
|--------------------|--------------------------------------------------------------------------------|
| 01                 | 0x0200, 0x0201, 0x0202, 0x0203, 0x0204, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209 |
| 02                 | 0x020A, 0x020B, 0x020C, 0x020D, 0x020E, 0x020F, 0x0210, 0x0211, 0x0212, 0x0213 |

# **Display Examples**

Using the provided configuration file.

### Example 1 – Displaying 123.4

### **Anybus Registers**

The table below shows the Anybus registers to write to, for Display with Address 01. The value of register 0x200 is the most significant character. Data justified right on the display.

Example values are shown to demonstrate the serial output data created and how the Fusion/Intuitive-S displays the subsequent data.

|                              |        | Variable Data |        |        |        |        |        |        |  |  |  |  |  |
|------------------------------|--------|---------------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| Anybus<br>Registers          | 0x0200 | 0x0201        | 0x0202 | 0x0203 | 0x0204 | 0x0205 | 0x0206 | 0x0207 |  |  |  |  |  |
| Example<br>Values<br>(Bytes) | 0x31   | 0x32          | 0x33   | 0x2E   | 0x34   | 0x00   | 0x00   | 0x00   |  |  |  |  |  |
| Example<br>Values<br>(ASCII) | 1      | 2             | 3      |        | 4      |        |        |        |  |  |  |  |  |

### **Subnet Serial Data Created**

The example Anybus program frames your variable data between fixed constants STX, Address and ETX. Using the example values, the following serial data is created on the Anybus subnet.

| Serial Format | STX       | Add  |      | Variable Data |          |          |          |          |           |           | ETX       |           |
|---------------|-----------|------|------|---------------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|               |           |      |      | 0×0200        | 0x0201   | 0×0202   | 0x0203   | 0x0204   | 0×0205    | 0×0206    | 0x0207    |           |
| Bytes         | 0x02      | 0x30 | 0x31 | 0x<br>31      | 0x<br>32 | 0x<br>33 | 0x<br>2E | 0x<br>34 | 0x<br>00  | 0x<br>00  | 0x<br>00  | 0x03      |
| ASCII         | $S_{T_X}$ | 0    | 1    | 1             | 2        | 3        |          | 4        | $N_{U_L}$ | $N_{U_L}$ | $N_{U_L}$ | $E_{T_X}$ |

| Fields        |                |
|---------------|----------------|
| STX           | Start of text  |
| ETX           | End of text    |
| Address       | Device Address |
| Variable Data | Data           |

The Equivalent data can be re-created on Realterm Serial Capture Program with: \x0201123.4\x03

### **Fusion/Intuitive Display**



The data will appear on the display as shown left. In this example the data length fits the display.

Example 2 – Displaying 12:34 (option: if colons are available)

### **Anybus Registers**

The table below shows the Anybus registers to write to, for Display with Address 01. The value of register 0x200 is the most significant character. Data justified right on the display.

Example values are shown to demonstrate the serial output data created and how the Fusion/Intuitive-S displays the subsequent data.

|                              |        | Variable Data |        |        |        |        |        |        |  |  |  |  |  |
|------------------------------|--------|---------------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| Anybus<br>Registers          | 0x0200 | 0x0201        | 0x0202 | 0x0203 | 0x0204 | 0x0205 | 0x0206 | 0x0207 |  |  |  |  |  |
| Example<br>Values<br>(Bytes) | 0x31   | 0x32          | 0x3A   | 0x33   | 0x34   | 0x00   | 0x00   | 0x00   |  |  |  |  |  |
| Example<br>Values<br>(ASCII) | 1      | 2             | :      | 3      | 4      |        |        |        |  |  |  |  |  |

### **Subnet Serial Data Created**

The example Anybus program frames your variable data between fixed constants STX, Address and ETX. Using the example values, the following serial data is created on the Anybus subnet.

| Serial Format | STX       | Add  |        | Variable Data |          |          |          |          |           |           | ETX       |           |
|---------------|-----------|------|--------|---------------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|               |           |      | 0x0200 | 0x0201        | 0x0202   | 0x0203   | 0x0204   | 0x0205   | 0x0206    | 0x0207    |           |           |
| Bytes         | 0x02      | 0x30 | 0x31   | 0x<br>31      | 0x<br>32 | 0x<br>3A | 0x<br>33 | 0x<br>34 | 0x<br>00  | 0x<br>00  | 0x<br>00  | 0x03      |
| ASCII         | $S_{T_X}$ | 0    | 1      | 1             | 2        | :        | 3        | 4        | $N_{U_L}$ | $N_{U_L}$ | $N_{U_L}$ | $E_{T_X}$ |

| Fields        |                |
|---------------|----------------|
| STX           | Start of text  |
| ETX           | End of text    |
| Address       | Device Address |
| Variable Data | Data           |

The Equivalent data can be re-created on Realterm Serial Capture Program with: \x020112:34\x03

### **Fusion/Intuitive Display**



The data will appear on the display as shown left. It is important to remember that the colons must be placed at the right point between characters or they

may not appear correctly. If the example was displaying a clock 12:34 (HH:mm), and the minutes are below 9 then a padding of 0 will be required to keep the colons in the correct position e.g. 12:09 or 12:00.

### Example 3 – Displaying 123456

### **Anybus Registers**

The table below shows the Anybus registers to write to, for Display with Address 01. The value of register 0x200 is the most significant character. Data justified right on the display.

Example values are shown to demonstrate the serial output data created and how the Fusion/Intuitive-S displays the subsequent data.

|                              |        | Variable Data |        |        |        |        |        |        |  |  |  |  |  |
|------------------------------|--------|---------------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| Anybus<br>Registers          | 0x0200 | 0x0201        | 0x0202 | 0x0203 | 0x0204 | 0x0205 | 0x0206 | 0x0207 |  |  |  |  |  |
| Example<br>Values<br>(Bytes) | 0x31   | 0x32          | 0x33   | 0x34   | 0x35   | 0x36   | 0x00   | 0x00   |  |  |  |  |  |
| Example<br>Values<br>(ASCII) | 1      | 2             | 3      | 4      | 5      | 6      |        |        |  |  |  |  |  |

### **Subnet Serial Data Created**

The example Anybus program frames your variable data between fixed constants STX, Address and ETX. Using the example values, the following serial data is created on the Anybus subnet.

| Serial Format | STX       | Address |      | Variable Data |          |          |          |          |          |           | ETX       |           |
|---------------|-----------|---------|------|---------------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
|               |           |         |      | 0x0200        | 0×0201   | 0x0202   | 0x0203   | 0x0204   | 0x0205   | 0x0206    | 0x0207    |           |
| Bytes         | 0x02      | 0x30    | 0x31 | 0x<br>31      | 0x<br>32 | 0x<br>33 | 0x<br>34 | 0x<br>35 | 0x<br>36 | 0x<br>00  | 0x<br>00  | 0x03      |
| ASCII         | $S_{T_X}$ | 0       | 1    | 1             | 2        | 3        | 4        | 5        | 6        | $N_{U_L}$ | $N_{U_L}$ | $E_{T_X}$ |

| Fields        |                |
|---------------|----------------|
| STX           | Start of text  |
| ETX           | End of text    |
| Address       | Device Address |
| Variable Data | Data           |

The Equivalent data can be re-created on Realterm Serial Capture Program with: \x0201123456\x03

### **Fusion/Intuitive Display**



The data will appear on the display as shown left. In this example the data length fits the display.

### Example 4 – Data length too long.

### **Anybus Registers**

The table below shows the Anybus registers to write to, for Display with Address 01. The value of register 0x200 is the most significant character. Data justified right on the display.

Example values are shown to demonstrate the serial output data created and how the Fusion/Intuitive-S displays the subsequent data.

|                              |        | Variable Data |        |        |        |        |        |        |  |  |  |  |
|------------------------------|--------|---------------|--------|--------|--------|--------|--------|--------|--|--|--|--|
| Anybus<br>Registers          | 0x0200 | 0x0201        | 0x0202 | 0x0203 | 0x0204 | 0x0205 | 0x0206 | 0x0207 |  |  |  |  |
| Example<br>Values<br>(Bytes) | 0x31   | 0x32          | 0x33   | 0x34   | 0x35   | 0x36   | 0x37   | 0x38   |  |  |  |  |
| Example<br>Values<br>(ASCII) | 1      | 2             | 3      | 4      | 5      | 6      | 7      | 8      |  |  |  |  |

### **Subnet Serial Data Created**

The example Anybus program frames your variable data between fixed constants STX, Address and ETX. Using the example values, the following serial data is created on the Anybus subnet.

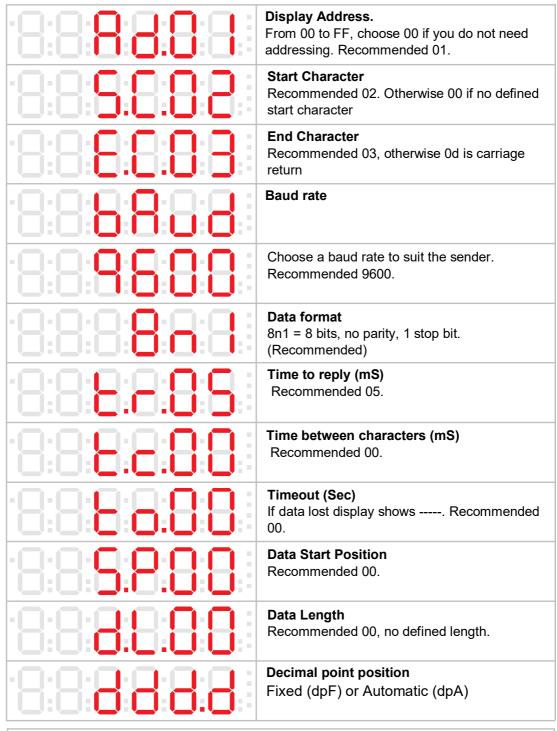
| Serial Format | STX       | Address |      | Variable Data |          |          |          |          |          |          |          | ETX       |
|---------------|-----------|---------|------|---------------|----------|----------|----------|----------|----------|----------|----------|-----------|
|               |           |         |      | 0x0200        | 0×0201   | 0x0202   | 0×0203   | 0x0204   | 0x0205   | 0x0206   | 0x0207   |           |
| Bytes         | 0x02      | 0x30    | 0x31 | 0x<br>31      | 0x<br>32 | 0x<br>33 | 0x<br>34 | 0x<br>35 | 0x<br>36 | 0x<br>37 | 0x<br>38 | 0x03      |
| ASCII         | $S_{T_X}$ | 0       | 1    | 1             | 2        | 3        | 4        | 5        | 6        | 7        | 8        | $E_{T_X}$ |

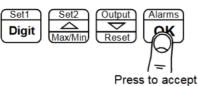
| Fields        |                |  |  |  |  |
|---------------|----------------|--|--|--|--|
| STX           | Start of text  |  |  |  |  |
| ETX           | End of text    |  |  |  |  |
| Address       | Device Address |  |  |  |  |
| Variable Data | Data           |  |  |  |  |

The Equivalent data can be re-created on Realterm Serial Capture Program with: \x020112345678\x03

### **Fusion/Intuitive Display**



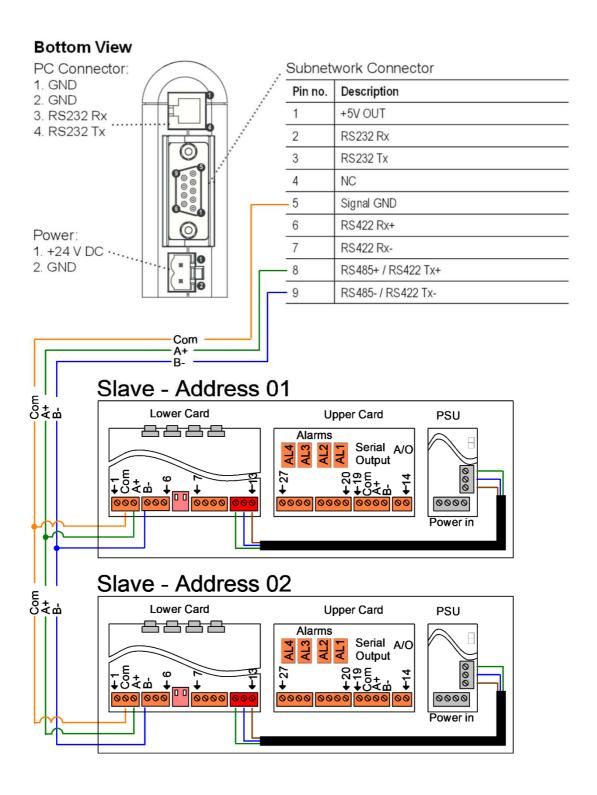

The data will appear on the display as shown left. In this example the data length is to long for the display. Register 0x200 and 0x201 values are lost.


# **Display Settings**

For Fusion or Intuitive Serial Slave Displays, RS232/RS485

Follow recommended setting when using provided configuration file.

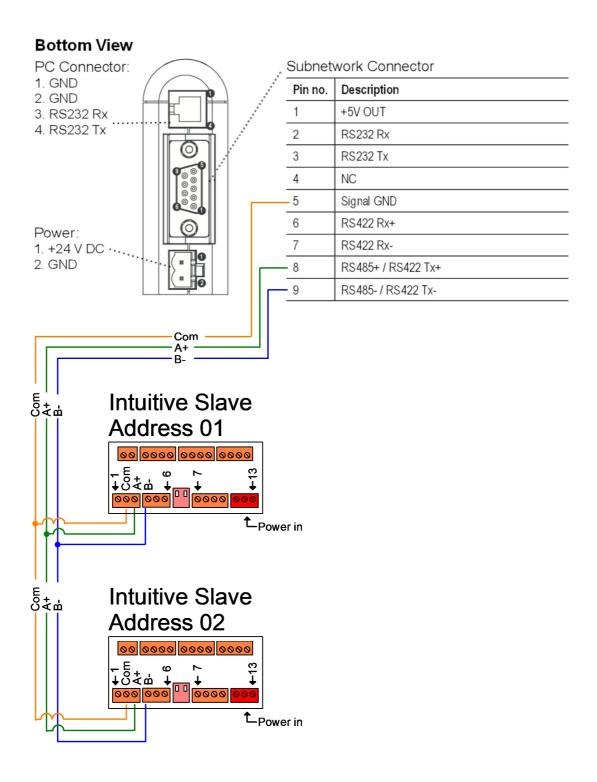









# Wiring Diagram – Anybus RS485 Subnet


For Fusion Large Displays



Biasing links B&C should be used, see Fusion-S manual for connection details.

# Wiring Diagram - Anybus RS485 Subnet

For Intuitive Panel meter series INT2-S4 & INT4-S4



Biasing links B&C should be used, see intuitive-S manual for connection details.