Caution: There is a risk of electrical shock if this instrument is not properly installed

Caution: Risk of danger: Read the whole manual before you install this meter
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm board configuration</td>
<td>19</td>
</tr>
<tr>
<td>Alarm programming</td>
<td>20-25</td>
</tr>
<tr>
<td>Analogue output</td>
<td>17-18</td>
</tr>
<tr>
<td>Basic meter startup settings</td>
<td>10</td>
</tr>
<tr>
<td>Bootup routine</td>
<td>10</td>
</tr>
<tr>
<td>Brightness Adjustment</td>
<td>11</td>
</tr>
<tr>
<td>Button Functions</td>
<td>12-13</td>
</tr>
<tr>
<td>Connections</td>
<td>9</td>
</tr>
<tr>
<td>Connection Examples</td>
<td>33</td>
</tr>
<tr>
<td>Declaration of conformity</td>
<td>36</td>
</tr>
<tr>
<td>Dimensions</td>
<td>29</td>
</tr>
<tr>
<td>General Description</td>
<td>6</td>
</tr>
<tr>
<td>Input Configuration</td>
<td>15</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Keyboard timeout Delay</td>
<td>10</td>
</tr>
<tr>
<td>Language</td>
<td>10</td>
</tr>
<tr>
<td>Logic inputs</td>
<td>28</td>
</tr>
<tr>
<td>Modes and Scaling</td>
<td>14</td>
</tr>
<tr>
<td>Mounting and Installation</td>
<td>7</td>
</tr>
<tr>
<td>Notes</td>
<td>35</td>
</tr>
<tr>
<td>Option boards- installing</td>
<td>16</td>
</tr>
<tr>
<td>Ordering code</td>
<td>29</td>
</tr>
<tr>
<td>Record of revisions</td>
<td>31</td>
</tr>
<tr>
<td>Reverse/mirror/Heads-Up display</td>
<td>34</td>
</tr>
<tr>
<td>Serial output option</td>
<td>26-27</td>
</tr>
<tr>
<td>Specifications</td>
<td>30</td>
</tr>
<tr>
<td>Warnings</td>
<td>4</td>
</tr>
<tr>
<td>WEEE</td>
<td>32</td>
</tr>
<tr>
<td>Wiring Advice</td>
<td>8</td>
</tr>
</tbody>
</table>
Warnings

Please carefully read this manual and all warnings. Install the display ONLY when you are sure that you’ve covered all aspects.

⚠️ Check that the model number and supply voltage suit your application before you install the display.

⚡ Connect the display according to current IEE regulations, IEC61010 & NFPA:70 National Electric Code in USA.

⚠️ We designed this meter for Pollution-Degree 2 environments. It is sealed to IP65 NEMA4 all round for wall and suspension mounting versions with glands on the bottom surface.

⚠️ Power supplies to this equipment must have anti-surge (T) fuses at 2A for 230V supply, 5A for 110V supply or 5A for DC supplies in the range 11-30VDC. A switch or circuit breaker, clearly marked as a disconnecting device, must be included close to the installation.

⚠️ Don’t touch any circuitry after you have connected the display, because there may be lethal voltages on the circuit board.

⚠️ Only adjust on-board switches or connections with the power turned off.

⚠️ Make sure all screw terminals are tight before you switch the meter on.

⚠️ Only clean the display’s case with a soft damp cloth. Only lightly dampen with water. Do not use any other solvents.

Rear case screws - please note
The rear panel is held in place with finger-screws, which only need to be gently tightened.

Do not use tools to tighten or loosen the screws, as this could cause damage to the internal threads.

Safety FirstDon’t assume anything............ Always double check.
If in doubt, ask someone who is QUALIFIED to assist you in the subject.
Introduction

Please contact us if you need help, if you have a complaint, or if you have suggestions to help us improve our products or services.

If you contact us about a product you already have, please tell us the full model number and serial number, so that we can give you accurate and fast help.

This product has a 2 year warranty. We will put right or replace any meter which is faulty because of bad workmanship or materials. This warranty does not cover damage caused by misuse or accident.

IMPORTANT

If this equipment is important to your process, you may want to buy a spare to cover possible failure or accidental damage in the future.

This is because during factory shutdown periods, you may have to to wait several weeks for an equivalent replacement, or we may have no stock at the time you urgently need it.

You may also need to pay extra carriage charges if you want a fast, guaranteed courier service. Warranty repairs or replacements are usually returned with a standard courier service.

We do not offer compensation for losses caused by failure of this instrument.

If you do not agree with these conditions, please return this item in unused, condition, in its original packaging and we will refund the purchase price, excluding any carriage paid.

We thought you’d prefer to know about possible delays and extra charges now, rather than during a panic. A spare unit could help to avoid these issues.

We always try to improve our products and services, so these may change over time. You should keep this manual safely, because future manuals, for new designs, may not describe this product accurately.

We believe these instructions are accurate, and that we have competently designed and manufactured the product, but please let us know if you find any errors.
General Description

The FUSION Series of displays accept industrial sensors to allow various physical measurements to be made, such as weight, temperature, pressure, humidity etc. Different models are available for different sensor types.

The main function of the FUSION series is to give a large numeric readout of the variable being monitored. You can choose from various digit sizes and formats. Most models include an excitation power output, to power the sensor directly.

Optional output modules are also available, to give alarm relay outputs, analogue output or digital communications, or any combination of these options.

Displays are programmed using front panel pushbuttons. The buttons may be locked with a switch. The buttons may also be wired remotely, so that you can make your settings from ground level.

These displays have two power supply options: 100-240 VAC or 11-30VDC.

These units must be installed fully assembled, and must be installed according to local electrical installation rules. When properly installed, with glands on the lower surface, they provide ingress protection to IP65 / NMA4X.

Safety

Caution: There is a risk of electrical shock if this instrument is not properly installed

Caution: Risk of danger: Read the whole manual before you install this meter

Obey all safety warnings in this manual, and install the display according to local wiring and installation regulations. Failure to follow these guidelines may cause damage to the display, connected equipment, or may be harmful to personnel.

Any moving mechanical device controlled by this equipment must have suitable access guards to prevent injury to personnel if the meter should fail.
Mounting and Installation

Install your Fusion display according to local electrical regulations.

Mount it away from moving machinery, to minimise the chance of damage, and keep away from sources of heat, plastics solvents and electrical and magnetic noise, such as welding equipment, arc lighting, inductive machines etc.

The screws on the back of the display are necessary for sealing - do not omit any screws.

Do not overtighten screws - it is sufficient to finger-tighten them. In no circumstance use an electric screwdriver to remove or fit screws, or you will damage the case threads and sealing will be impaired.

Power cables and alarm relay cables should be routed separately to input signal, logic signal, serial data and analogue output cabling, to minimise the chances of electrical interference.
Only open the case when power has been removed.

This display uses internal detachable screw terminal connectors. Refer to the wiring diagram on the following page for the correct positioning of each wire. Each cable is fed through a compression gland for sealing. All glands must be sealed, unused glands must be plugged.

The conductors you use must be suitable for the meter’s temperature, current and voltage rating, which is broadly described as follows:-

Cable Temperature Rating
All cables must be rated for operation up to 90°C continuous.

Cable gauge
The connectors on this instrument can accept conductors up to 1.5mm² c.s.a. The minimum cross sectional area shall be 0.5mm².

Cable insulation voltage rating
Cables shall have an insulation voltage rating of at least 380V continuous.

Wire preparation:

We recommend multi-strand wire, because it withstands vibration better than single strand cable. Pull the wire firmly after you make the connection to confirm it is tight.

Use screened cable for all signal and control wiring and connect the screen to earth at the destination end only. Route signal cabling away from power cabling and relay switching cabling, to avoid electrical noise interference.

Use a single, circular cable through each gland, diameter 4.5 to 6.5mm.
Connectors and options

Connectors may be present even if output options are not installed. Refer to rating label to see installed options.

Connections

Signal Input Board

- Sensor Inputs
- Contact closure logic
- Power

- Common
- Input 1
- Excitation +
- Input 2
- Input 3
- Common
- Input 4
- n/c
- Peak
- Valley
- Reset

Alarm, Analogue and Serial comm.s board

- Power Board
- Alarm Lock switch
- Calib. Lock switch
- Alarm

- DC+/AC L
- DC-/AC N
- n/c
- Earth

Board positions

Your display may have its boards in a different position or orientation. The pinouts will be the same as shown.

Connectors and options

Connectors may be present even if output options are not installed. Refer to rating label to see installed options.

From 4 to 8 glands will be fitted, depending on output options installed.
Basic startup meter Settings

Lockout notes: Cal Lock switch = OFF when changing. Switch Cal Lock to ON after changing

Menu Language Choice
Press the two right hand buttons briefly. You will see the User Interface language, which you can change with the UP or DOWN buttons. Accept with OK

![User Interface language choices](image)

Next you will see ...

Meter Bootup routine

1. Activates all digit segments
2. Runs up and down brightness settings
3. Displays model number and installed options
4. Displays firmware version
5. Displays calibration audit number.
6. Goes to meter mode

When you switch the meter on, it can run through a summary list of software version number, installed options, calibration number etc.

You can choose from 3 lists of bootup information to be displayed, the less information you display, the sooner the meter will be available to operate.

Next you will see ...

Software de-bounce

You can enable a software debounce function for slow pulse rates, to limit pulses to once every 10 seconds. Select P.DB.0 to disable this function, or P.DB.1 to enable it.
Brightness Adjustment

Lockout notes: Cal Lock switch = ON when changing.

In normal operation, you can select from one of 8 brightness levels, to suit your local lighting conditions, or to match the brightness of several meters which may be from different batches or ages.

Press for 3 seconds, then press the down or up button to decrease or increase the brightness.

Press OK when set.

Your chosen brightness level will be saved in memory, so that the meter will return to the chosen brightness after power-off.
<table>
<thead>
<tr>
<th>Functions</th>
<th>Buttons</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Settings</td>
<td></td>
<td>Can be viewed at any time. Alarm lockout OFF to change</td>
</tr>
<tr>
<td>Press button briefly to view</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3 seconds to change setpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5 seconds to change function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analogue Output Settings</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press > 3 seconds to enter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td></td>
<td>Calibration lockout ON</td>
</tr>
<tr>
<td>Press button for 3 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Factor</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons >3 secs, press OK 2x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Offset</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons >3 secs, press OK 3x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce - analogue filter</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons >3 secs to enter input set. Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce - digital filter</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons briefly then press OK twice. Select 1 to enable, 0 to disable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal Point position</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press button 3 seconds, set during Scaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware & Software summary</td>
<td></td>
<td>Can be viewed at any time</td>
</tr>
<tr>
<td>Press both buttons >3 secs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Configuration</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons for 3 seconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language & Boot-up mode</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons briefly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td>Buttons</td>
<td>Conditions</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Last digit round-up</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons >3 secs, press OK once</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu timeout delay</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons briefly, press OK 3x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode and Scaling</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press button for 3 seconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change with UP/DOWN button. OK=Accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Peak & Valley memories</td>
<td></td>
<td>Calibration lockout ON and Link terminals 7,10 and 8</td>
</tr>
<tr>
<td>Press buttons briefly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Comms setup</td>
<td></td>
<td>Calibration lockout OFF</td>
</tr>
<tr>
<td>Press both buttons briefly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset display to 0</td>
<td></td>
<td>Calibration lockout ON and Link terminals 7 and 10</td>
</tr>
<tr>
<td>Press button briefly. Display shows 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley & Peak (Max. & Min.)</td>
<td></td>
<td>Calibration lockout ON and Link terminals 7 and 9</td>
</tr>
<tr>
<td>Press button briefly, once for peak, next for valley.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modes and Scaling

The INT-C2 has a number of useful operating modes. When you have chosen a mode, you can then scale the display. To select a mode, switch the lockout switch OFF and press the Set1 button for 3 seconds....

Choose one of the totaliser modes....

Tot = Single input scalable counter
Gat.t = Single input scalable counter with gate input
1 iU.D = Single input scalable counter with up/down direction input
2 iU.D = Dual input scalable counter. Input1=count up. Input2 =count down
2 i U.U. = Dual input scalable counter, Input1 and Input 2 are up count ports
uudd = 4 inputs. Inputs 1 & 2 = up count, inputs 3 & 4 = down count
uuuu = 4 inputs, all up count.
dddd = 4 inputs, all down count.

The scaling is fully adjustable.

Puls.In = Pulse input - specify a number of input pulses.
Disp = display. Specify the amount the display must change by, for your specified number of input pulses.

You can position the decimal point wherever you want, for both Puls.In and Disp. While in the setup, press Set2 for 3 seconds and you will then be able to move the decimal point position with the UP / DOWN button. Press OK when done.

You can set a value to which the display will always reset, using **PRESET**
You can pre-load the counter with a starting value, with **Preload**. If a preload value is set, but Preset is 0, the counter will clear to 0 when you do a reset.

The **Period** counter is useful for measuring intervals, or as a bake timer. With Pulsin= 1 and disp=1, the unit will display in milliseconds. With Pulsin= 1000 and disp=1.00, the unit will display in seconds, to 2 places. With Pulsin= 3600 and disp= 0.001 the unit will display in hours, to 3 places. Freely choose your own scaling to suit your application.

The **Rate** mode is ideal for measuring frequency, speed or cadence. With Fr.in=1 and dsp=1, the unit will display in pulses per second or Hz. With Fr.in=1 and dsp=60, the unit will display in pulses per minute. With Fr.in=1 and dsp=3600, the unit will display in pulses per hour. With Fr.in=1 and dsp=60, the unit will display RPM if 1 pulse per rev. **Avg** = number of pulses to average, to smooth a jittery reading. **Del** = number of seconds after loss of signal, before the display returns to 0
You can configure the inputs, using the buttons, to accept AC, DC or low level inductive pulses. You can also choose whether to have a pull-down or pull-up resistor (for PNP, NPN or contact closure inputs) and whether to include de-bounce filtering, to minimise contact bounce effects. Each input can be configured independently. To configure the inputs, switch the lockout switch OFF and press Set1 and Set2 buttons together for 3 seconds...

Signal Input type	**Use these Settings**
NPN | PulsDC Pull.Up DB.O
dbnc x.xxx
PNP | PulsDC Pull.Dn DB.O
dbnc x.xxx
Contact closure | PulsDC Pull.Up DB.1
dbnc x.xxx
24V DC | PulsDC Pull.Dn DB.O
dbnc x.xxx
Passive Inductive pickup* | Induct Pull.Dn DB.O
dbnc x.xxx
AC voltage 5V up to 50V | PulsAC PullDn DB.O
dbnc x.xxx

* Only available on input 1
How to install option boards

Warning: Disconnect all power before exposing the rear of the meter

If you want to open your display to install or modify option boards, follow these steps...

1) Switch off power to the display.

2) Undo all screws on the rear of the case, remove the back panel.

3) The internal display board has positions for mounting the main board and the option board

4) The option board will either have 0, 2 or 4 relays, and can be fitted onto the connectors. It is secured by white plastic press-pillars. You can add an analogue output option and a serial output option to this option carrier board, or one of each, or neither.

The board assemblies will look something like this...

![Diagram of display with option boards]

You must apply a firm force when fitting or removing these options.

Always be careful to connect the pins to sockets accurately. When reassembling, make sure option boards are firmly fixed to the upper option board. When the boards are installed, you can make connections via the cable glands - see manual for terminal identification. When wiring is complete, replace the back panel and re-fit all the screws - do not over-tighten.
The analogue output board plugs onto the 0, 2 or 4 alarm upper option board. It plugs onto a pair of connectors and is secured by two snap-pillars.

Check that the unit is set for voltage or current output, to suit your application.

Re-assemble the meter, apply power and follow the Analogue Output Settings procedure on the next page.

You can set the analogue output to operate over a display range of your choice, to create 0-20mA, 4-20mA or 0-10V, fully isolated.

Please see the following page for a guide how to do this.

Handy Feature
You can tell if an analogue output is fitted to your meter, and if it has been set for voltage or current, by viewing the ‘Summary’ display.

To see this, press the two outer buttons of the display for 3 seconds. You will also see the summary when you first switch on your meter.
Your analogue output can cover 0-100% of its range over a display range which you can set.

For example, you might want 4-20mA output, for a display range of 500 to 1000.

You would press the Analogue O/P button for 3 seconds, and select 4-20mA

Then set 0% = 500
Then set 100% = 1000

Press the OUTPUT button for 3 seconds. If an output board is fitted, the display will confirm this and confirm the range chosen by the jumpers on the previous page.

The 0% LED will flash. Select the Output range you want.

Use the DIGIT, ▲ and ▼ buttons to set the display value at which you want 0% analogue output.

Press OK when done.

The 100% LED will flash.

Use the DIGIT, ▲ and ▼ buttons to set the display value at which you want 100% analogue output.

Press OK when done.

When you have finished setting the meter, put the lockout switch in its ON position now, to prevent your settings from being changed.
You can have 3 types of alarm board:

- **a)** An alarm board with no relays, which will simply allow you to fit analogue and/or serial output options.
- **b)** An alarm board with 2 relays, to which you can also fit analogue and/or serial output options.
- **c)** An alarm board with 4 relays, to which you can also fit analogue and/or serial output options.

For failsafe operation (where contacts open on alarm or when power is lost to the meter) set the jumpers for OPEN CONTACTS as shown below, and DE-ENERGISE on alarm, in the alarm setup menu.

To access the alarm board, remove power from meter, including any power which might be on the alarm output board.

Look on the top and bottom surfaces of the case, near the rear. You will see two small screws, one on each surface. Remove both screws. Now, clip off the front bezel and slide the meter assembly carefully out via the front of the case.

The relay board plugs into the main board. Gently separate the two boards.

Select relay output contact status, when relays are de-energised (power removed from meter) by placing these jumpers. Each relay has a snubbing network to minimise contact sparking.

When you have set the jumpers, refit the board to the meter and carefully slide the assembly back into the case.

Fit the two small screws to the top and bottom surfaces of the case.
Alarm Programming

Lockout notes: Alarm Lock switch = OFF when changing. Switch Alarm Lock to ON after changing.

Alarm lockout switch must be OFF. Press alarm button briefly to choose an alarm channel - look at the AL1, AL2, AL3 or AL4 LEDs to see which channel is selected.

Then press the alarm button for 3 seconds to show the Setpoint window - you can now edit the setpoint value with the DIGIT, UP and DOWN buttons. Press OK when done.

If you want to change the function of an alarm channel, keep your finger on the alarm button for a further 3 seconds after you see the Set.p prompt, which will bring up the AL CF (alarm configure) prompt.

See the alarm board configuration page also, for details on selecting normally open or normally closed contact outputs.

See the following pages for more detailed descriptions of how each alarm mode operates. Remember to put the alarm lock switch ON when finished, to keep your settings safe.
Hi Alarm relay action, no Hysteresis

- Alarm tripped
- Alarm reset

The alarm relay will activate when the measured value is at or above the setpoint value.
The alarm relay will reset when you fall below the setpoint value.

- Alarm = Hi
- Setpoint = 69
- Hysteresis = 0

Hi Alarm relay action with Hysteresis

- Alarm tripped
- Alarm reset

The alarm relay will activate when the measured value is at or above the setpoint value.
The alarm relay will reset when you fall below the setpoint value by the hysteresis amount.

- Alarm = Hi
- Setpoint = 69
- Hysteresis = 20
Lo Alarm relay action, no hysteresis

The alarm relay will activate when the measured value is at or below the setpoint value. The alarm relay will reset when you rise above the setpoint value.

Lo Alarm relay action with Hysteresis

The alarm relay will activate when the measured value is at or below the setpoint value. The alarm relay will reset when you rise above the setpoint value by the hysteresis amount.
The In-Flight alarm modes are used in applications where you want to accurately fill one container from another.

If you were to simply close the shutoff valve when the weight reaches your desired amount, you would find that the weight is higher than you’d hoped for.

This is because some material is still in mid-flight when you send the alarm signal to shut the valve, and the valve will take some time to fully close.

The load measured on the loadcell platform will continue to increase after the alarm signal is sent to the shutoff valve.

The InFlight modes subtract or add this “In-Flight” amount from the setpoint to ensure that your final fill amount is as close as possible to your desired value.

In automatic mode, the unit will note the error after the first fill and try to correct for it on the next fill by moving the trip point by all the error amount on the 2nd fill and by half the subsequent error amount on each following fill. It will constantly monitor the error and correct by half that amount, to ensure a smooth trend towards accurate filling.

Manual or Automatic?
You can set a manual value for the Inflight amount, if you know how much in-flight material will continue to fall into the container after the shutoff valve has been triggered, and if this value is likely to remain consistent from fill to fill.

If you don’t know the inflight amount or if the material flow properties may change from batch to batch, you can use the automatic mode.

To set, press the alarm button until you illuminate the alarm LED channel you want to change. Press the alarm button again for around 6 seconds, you will see “Set.Pt” followed by “AL CFG”. Use the Digit, UP/Down buttons and OK to set.

Manual Mode

Automatic mode

Desired Setpoint
This is the amount you want to fill.

Inflight amount
You can set a best guess for automatic mode, to speed the correction.
The In-Flight alarm modes are used in applications where you want to accurately fill one container from another.

If you were to simply close the shutoff valve when the weight reaches your desired amount, you would find that the weight is higher than you’d hoped for.

This is because some material is still in mid-flight when you send the alarm signal to shut the valve, and the valve will take some time to fully close.

The load measured on the loadcell platform will continue to increase after the alarm signal is sent to the shutoff valve.

The InFlight modes subtract or add this “In-Flight” amount from the setpoint to ensure that your final fill amount is as close as possible to your desired value.

In automatic mode, the unit will note the error after the first fill and try to correct for it on the next fill by moving the trip point by all the error amount on the 2nd fill and by half the subsequent error amount on each following fill. It will constantly monitor the error and correct by half that amount, to ensure a smooth trend towards accurate filling.

Manual or Automatic?

You can set a manual value for the Inflight amount, if you know how much in-flight material will continue to fall into the container after the shutoff valve has been triggered, and if this value is likely to remain consistent from fill to fill.

If you don’t know the inflight amount or if the material flow properties may change from batch to batch, you can use the automatic mode.

To set, press the alarm button until you illuminate the alarm LED channel you want to change. Press the alarm button again for around 6 seconds, you will see “Set.Pt” followed by “AL CFG”. Use the Digit, UP/Down buttons and OK to set.
In-Band Alarm relay

The alarm relay will activate when the measured value is below the HI value and above the LO value.

Out-Band Alarm relay

The alarm relay will activate when the measured value is above the HI value or below the LO value.
The serial output board plugs onto the 0, 2 or 4 alarm upper option board.

It plugs onto a pair of connectors and is secured by a snap-pillar.

The 120 Ohm termination resistor should be fitted to only the last display on an RS485 data link, to improve noise immunity. A terminator should also be fitted on the sending device.

The bias jumpers are not normally fitted, but are available if your system needs biasing, to keep it in a valid idle state when data is not present.

Re-assemble the meter, apply power and follow the Serial Output Settings procedure on the next page.

Handy Feature
You can tell if a serial output is fitted to your meter by viewing the ‘Summary’ display. Press the two outer buttons of the display for 3 seconds. You will also see the summary when you first switch on your meter.
Serial Output - page 2

Lockout notes: Cal Lock switch = OFF when changing. Switch Cal Lock to ON after changing.

Baud: Select from 300,600,1200,2400,4800,9600,19200,38400, 57600,115200

dF = Data Format = 8n1, 7n1, 7E1, 701

Prot = Protocol = P1 (polled ASCII), P2 (Polled Modbus ASCII), C1 (Continuous), H1 (GPS)

Ad. = Address = 00 to FF

t.r = Reply Delay time in milliseconds 00 to 99

t.C = Character space timing in milliseconds 00 to 99

Protocol C1 – Continuous output

Meter sends: 8 characters<CR>

e.g.

- 20 20 20 20 20 2D 31 37 0D (-17) decimal position = 0
- 20 20 20 20 2D 31 2E 36 0D (-1.6) negative value
- 20 20 20 20 2D 31 2E 38 0D (+1.8) positive value
- 20 20 20 20 2D 4F 52 0D (OR) over range
- 20 20 20 20 2D 55 52 0D (UR) under range

Protocol H1 - GPS clock data format for use with our ASR-GPS

Protocol P1 – Polled ASCII

Controller sends: <STX> ADDRH:ADDRL r <ETX> _e.g._ 02 46 37 72 03 (to device F7)

Meter replies <STX> 8 characters <ETX>

e.g.

- 02 20 20 20 20 2D 31 37 03 (-17) decimal position = 0
- 02 20 20 20 2D 31 2E 36 03 (-1.6) negative value
- 02 20 20 20 2D 31 2E 38 03 (+1.8) positive value
- 02 20 20 20 2D 4F 52 03 (OR) over range
- 02 20 20 20 2D 55 52 03 (UR) under range

Protocol P2 – Polled ASCII Modbus

When you have finished setting the meter, put the lockout switch in its ON position now, to prevent your settings from being changed.
Peak and Valley Detection (Maximum/Minimum Reading View)
The meter can store the lowest and highest reading values in memory. You can see these values if you press the MAX/MIN front panel button, or by using remote contact closure switches. The first press shows peak, with the upper left hand indicator bar lit (marked ‘Max.’). The second press shows valley, with the lower left hand indicator lit (marked ‘Min.’). The display returns to the running value after 2 or 3 seconds. To reset the memory, press the RESET button for more than 3 seconds while peak or valley is being displayed. Peak and Valley values are not stored if you switch the meter off.

How to use the MAX/MIN button to view Peak or Valley
1) Link terminal 7 to terminal 9
2) Set lockout switch ‘ON’
3) Press UP arrow key (MAX/MIN) for peak, valley, normal

Remote contact closure viewing of Peak/Valley
1) Connect a normally-open contact closure switch between terminals 7 and 9
2) Set the calibration lockout switch ‘ON’

Reset Command
The reset command clears any stored peak or valley data, any tared offsets and any in-flight compensation data. It may be accessed either from the front panel or by external contact closure command.

Front Panel key reset command
1) Link terminal 7 to terminal 10 (not necessary if MEM-08 option fitted)
2) Set calibration lockout switch ‘ON’
3) Press Down Arrow key to reset display.

For Tare reset, you must press the Tare button AND the Reset button together.
For Peak/Valley reset, you must activate the reset key while a peak or valley value is being displayed.

Remote contact closure resetting
1) Connect a normally-open contact closure switch between terminals 7 and 10
2) Set calibration lockout switch 3 ‘ON’

Calibration Counter / Tamper detector
An internal totaliser counts each calibration. The ‘CAL XXX’ value appears for a second or two after you switch the meter on. The number starts at 00 and can go up to FFF. It counts all changes made to the meter’s calibration. It stores the total in non-volatile memory which can’t be reset, so is useful for keeping track of the meter’s calibration history. You can ask the meter to repeat its summary at any time if you press the two outer buttons for 3 seconds.
Ordering Guide. Create a full part number like this:-

Example part number = Fusion2-6N-P-ANI-AL2-R-D-AC-2-0

<table>
<thead>
<tr>
<th>Display Height</th>
<th>Digits and format</th>
<th>Function type</th>
<th>Analogue Output</th>
<th>Alarm Output</th>
<th>Serial Data Output</th>
<th>Colour & brightness</th>
<th>Supply Voltage</th>
<th>Mounting & Gland position & Sealing</th>
<th>Special Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” / 57mm digits</td>
<td>4 digits numeric</td>
<td>Counter -C</td>
<td>No output</td>
<td>No alarms</td>
<td>No data</td>
<td>Normal Inside</td>
<td>95-265VAC-AC</td>
<td>Panel, IP65 front</td>
<td>None</td>
</tr>
<tr>
<td>4” / 102mm digits</td>
<td>4 digits clock</td>
<td>Clock/Timer -H</td>
<td>4-20mA</td>
<td>2 alarms</td>
<td>RS232</td>
<td>-RDLV</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” / 150mm digits</td>
<td>6 digits numeric</td>
<td>Loadcell -L</td>
<td>0-10V</td>
<td>4 alarms</td>
<td>-232</td>
<td>Green -G</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8” / 200mm digits</td>
<td>6 digits clock</td>
<td>Process -P</td>
<td>+/-10V</td>
<td>2xSPCO</td>
<td>RS485</td>
<td>Yellow -Y</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12” / 300mm digits</td>
<td>8 digits numeric</td>
<td>Serial slave -S</td>
<td>2xSolid State -DSS</td>
<td></td>
<td>-485</td>
<td>Blue -B</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16” / 400mm digits</td>
<td>8 digits clock</td>
<td>Temperature -T</td>
<td></td>
<td></td>
<td></td>
<td>White -W</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time +Temp. -TT</td>
<td></td>
<td></td>
<td></td>
<td>Outdoor bright Red -RDLC</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time +RS485 -TZ</td>
<td></td>
<td></td>
<td></td>
<td>Green -GDLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yellow -YDLV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blue -BDLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Height</th>
<th>Digits and format</th>
<th>Function type</th>
<th>Analogue Output</th>
<th>Alarm Output</th>
<th>Serial Data Output</th>
<th>Colour & brightness</th>
<th>Supply Voltage</th>
<th>Mounting & Gland position & Sealing</th>
<th>Special Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Fusion 2</td>
</tr>
<tr>
<td>Fusion 4</td>
</tr>
<tr>
<td>Fusion 6</td>
</tr>
<tr>
<td>Fusion 8</td>
</tr>
<tr>
<td>Fusion 12</td>
</tr>
<tr>
<td>Fusion 16</td>
</tr>
<tr>
<td>4 digit</td>
</tr>
<tr>
<td>6 digit</td>
</tr>
<tr>
<td>8 digit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fusion 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>279w x 154.5h</td>
</tr>
<tr>
<td>434w x 195.5h</td>
</tr>
<tr>
<td>514w x 247h</td>
</tr>
<tr>
<td>664w x 297.5h</td>
</tr>
<tr>
<td>984w x 397.5h</td>
</tr>
<tr>
<td>1304w x 497.5h</td>
</tr>
<tr>
<td>434w x 195.5h</td>
</tr>
<tr>
<td>616w x 195.5h</td>
</tr>
<tr>
<td>744w x 247.5h</td>
</tr>
<tr>
<td>984w x 297.5h</td>
</tr>
<tr>
<td>1464w x 397.5h</td>
</tr>
<tr>
<td>1944w x 497.5h</td>
</tr>
<tr>
<td>75mm</td>
</tr>
<tr>
<td>25mm</td>
</tr>
</tbody>
</table>

Case width 'w' + 18 mm
Equipment Specifications

Case Depth: 75 mm including connectors
Case Material: Black uPVC
Connectors: Detachable Screw Terminal connectors

Environmental:
- Storage Temperature range: -20 to +70°C, non condensing
- Operating temperature range: 0 to 50°C, non condensing
- Sealed IP65 all round when glands are mounted on lower surface

Power:
- Burden: 100-240 VAC, 45 to 60Hz or 11-30 VDC optional
- 50VA maximum

Input Signals (4x):
- Contact closures, with debounce
- NPN and PNP proximity sensors (47kiloohm pullup/down)
- 24V logic pulses from PLCs
- AC tachometer inputs
- 100mV passive Inductance pickup (on Input 1 only)

Frequency Range: 0-40,000 Hz (0-100,000Hz on Rate only)
Accuracy: +/-0.05% of range, quartz crystal reference
Span tempco: 20 ppm/Degree Celsius

Excitation voltage: 24VDC nominal rated at 60mA, to power sensors

Averaging / smoothing: Selectable averaging time constant of 0 to 25 seconds.
Memory: Totals and settings saved in 10 year non-volatile memory.

Display update rate: 3 readings per second.
Display Range (max): -1999 to 9999

Plug-In Output Options:
Analogue O/P: 0-10VDC 0-20mA 4-20mA
Drive capacity: >1K Ohms <500 Ohms <500 Ohms
Isolation: 250 VAC Optically isolated
Accuracy: +/-0.1% range, +/-10mV for ANV, +/-10uA for ANI, 50ppm/C stab.
Linearity: +/-0.02% of range
Resolution: better than 0.2mV for 10v, 0.4uA for 20mA range
Scaling: Fully adjustable, direct or inverse

Alarm Relay O/P: 2 or 4 alarms SPST rated 2 Amperes at 250 VAC, resistive load. All relays must switch power from the same phase. Selectable normally open or normally closed by on-board switches. Selectable energise or de-energise on trip by menu Independant hysteresis on each alarm relay.

ASCII Data O/P: RS232 or RS485 ASCII Value of reading.
Format: 1 start bit, 8 data, no parity. <Measurement><CR>
Isolation: 250 VAC optically isolated
Record of revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 May 2007</td>
<td>INT-L Released with F00.001 software</td>
</tr>
<tr>
<td>22 May 2007</td>
<td>Added RS485 logic level diagram</td>
</tr>
<tr>
<td>22 August 2007</td>
<td>Added Zener barrier application notes.</td>
</tr>
<tr>
<td>2 October 2007</td>
<td>F00.006 software. Linearisation added. Inflight compensation and band alarms added.</td>
</tr>
<tr>
<td></td>
<td>Brightness setting added. Menu timeout delay added.</td>
</tr>
<tr>
<td>6 May 2008</td>
<td>Added 'General Description' page. Added power frequency spec. Mounting & Installation page added.</td>
</tr>
<tr>
<td></td>
<td>Added Wiring Advice page added</td>
</tr>
<tr>
<td>27 May 2008</td>
<td>Added UL label sample to front page. Added ClassII connection details.</td>
</tr>
<tr>
<td>26 June 2008</td>
<td>Added Bootup option menu</td>
</tr>
<tr>
<td>31 Oct 2008</td>
<td>Added Reverse menu, software debounce in Version F00.12 software</td>
</tr>
<tr>
<td>30 June 2009</td>
<td>Updated address</td>
</tr>
</tbody>
</table>
In Europe, this equipment must be disposed of in accordance with European Parliamentary Directive 2002/96/EC

This directive encourages recycling and the reduction of waste materials in the environment.

This means it must be sent to an approved recycling plant if you want to dispose of it.

It must not be thrown away in general rubbish.

If you are unable to dispose of this item locally, you may send it to us for recycling.

Conditions:

1. We will only accept items of our manufacture.

2. You must pay for the transport of the goods to us.

3. We will only accept items if they include a signed declaration by an authorised person in your organisation, stating that:

 i. The item is safe to handle and has no contaminants which may be harmful to health.

 ii. You wish us to dispose of or destroy the item(s)
Connection Examples

The logic input terminals, for RESET and PEAK/VALLEY, must **only** be connected to contact closures.

Do not connect voltages to the logic input terminals or you will damage the microprocessor.
Reverse/Mirror/Heads-Up display

Your Fusion display can be ‘mirror-imaged’ to allow it to be viewed as a reflection in a rear-view mirror, windscreen or other reflective surface.

This can be useful for creating ‘heads-up’ displays, for some test installations where the display will be viewed in a mirror, as a display for drivers reversing large vehicles, etc.

Reverse / Mirror display
Press both buttons briefly, press OK 5x
Change with UP/DOWN button. OK=Accept

Choose Rev.0 for normal display
Choose Rev.1 for reflected display

Reflection of meter in glass
Glass sheet
The meter
Declaration of Conformity

Declaration Reference : INTUITIVE Mk2
Issue Date : 30 April 2007
Products Covered : INTUITIVE Mk2 series
Title : DOC-INTUITIVE2

This is to confirm that the Product covered by this declaration have been designed and manufactured to meet the limits of the following EMC Standard :

EN61326-1:1997

and has been designed to meet the applicable sections of the following safety standards

EN61010-1:2001

Conditions

The meters are permitted a worst case error of 1% of A/D range during electro-magnetic disturbance, and must recover automatically when disturbance ceases without the need for human intervention, such as resetting, power-down etc.

The meters covered by this certificate must be installed in adherence to the following conditions :

Signal cabling shall be routed separately to power carrying cabling (includes relay output wiring)
All signal cabling shall be screened. The screen shall only be terminated to the power earth terminal

Declared as true and correct, for and on behalf of London Electronics Ltd.

J.R.Lees Director