N13 METER OF POWER NETWORK PARAMETERS

- Measurement of power network parameters in 3 or 4-wire balanced or unbalanced systems.
- Tetraquadrant energy measurement.
- Calculation and display of the neutral wire current.
- Measurement of voltage and current harmonics up to the 25th.
(available through the RS-485 interface).
- Indications taking into consideration values of programmed ratio.
- Digital transmission to the master system through the RS-485 MODBUS interface.
- Configurable alarm output.
- Retransmission of any measured quantity through the analog output.
- Battery support of configuration data and watt-hour meters’ states at supply decays.

EXAMPLE OF APPLICATION

INPUT:

AC

OUTPUTS:

-20...20 mA

GALVANIC ISOLATION:

MODBUS Password protection

Password

LP Config Program

THD WizPar Program

Supply

AC

-20...20 mA

FEATURES:

MODBUS Password protection

Password

LP Config Program

THD WizPar Program

Supply

MEASURED VALUES AND CALCULATED BY THE METER

<table>
<thead>
<tr>
<th>Measured value</th>
<th>Single-phase parameters</th>
<th>Three-phase parameters</th>
<th>Intrinsic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase voltage</td>
<td>(U_1, U_2, U_3)</td>
<td>(\pm (0.2% \text{ m.v. + 0.1% range}))</td>
<td></td>
</tr>
<tr>
<td>Phase-to-phase voltage</td>
<td>(U_{12}, U_{23}, U_{31})</td>
<td>(\pm (0.2% \text{ m.v. + 0.1% range}))</td>
<td></td>
</tr>
<tr>
<td>Single-phase current</td>
<td>(I_1, I_2, I_3)</td>
<td>(\pm (0.2% \text{ m.v. + 0.1% range}))</td>
<td></td>
</tr>
<tr>
<td>Mean phase current</td>
<td>(I)</td>
<td>(\pm (0.2% \text{ m.v. + 0.1% range}))</td>
<td></td>
</tr>
<tr>
<td>Active power</td>
<td>(P_1, P_2, P_3)</td>
<td>(P)</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Reactive power (inductively, capacitive)</td>
<td>(Q_1, Q_2, Q_3)</td>
<td>(Q)</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Apparent power</td>
<td>(S_1, S_2, S_3)</td>
<td>(S)</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Active energy (total, input, output)</td>
<td>(\text{EnP} (\text{EnP}_I, \text{EnP}_e))</td>
<td>(\text{EnP})</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Reactive energy (inductively, capacitive)</td>
<td>(\text{EnQ} (\text{EnQ}_I, \text{EnQ}_C))</td>
<td>(\text{EnQ})</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Apparent energy</td>
<td>(\text{EnS})</td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
<td></td>
</tr>
<tr>
<td>Power factor cos (\varphi)</td>
<td>(\text{PF}_1, \text{PF}_2, \text{PF}_3)</td>
<td>(\text{PF})</td>
<td>(\pm 1% \text{ m.v. \pm 2c})</td>
</tr>
<tr>
<td>Power factor tg (\varphi)</td>
<td>(\text{tg}_1, \text{tg}_2, \text{tg}_3)</td>
<td>(\text{tg})</td>
<td>(\pm 1% \text{ m.v.})</td>
</tr>
<tr>
<td>Current distortion factor</td>
<td>(\text{THD}{i_1}, \text{THD}{i_2}, \text{THD}_{i_3})</td>
<td>(\text{THD}_{i})</td>
<td>(\pm 5% \text{ m.v. \pm 2c})</td>
</tr>
<tr>
<td>Voltage distortion factor</td>
<td>(\text{THD}{v_1}, \text{THD}{v_2}, \text{THD}_{v_3})</td>
<td>(\text{THD}_{v})</td>
<td>(\pm 5% \text{ m.v. \pm 2c})</td>
</tr>
<tr>
<td>Frequency</td>
<td>(F)</td>
<td></td>
<td>(\pm 0.5% \text{ m.v.})</td>
</tr>
<tr>
<td>15 min. mean power</td>
<td>(P_{av})</td>
<td></td>
<td>(\pm (0.5% \text{ m.v. + 0.2% range}))</td>
</tr>
<tr>
<td>Current in the neutral wire</td>
<td>(I_n)</td>
<td></td>
<td>(\pm (0.2% \text{ m.v. + 0.1% range}))</td>
</tr>
</tbody>
</table>

where:
- \(K_v \): ratio of voltage transformer, \(K_i \): ratio of current transformer,
- \(\text{m.v.} \): measured value, \(\text{range} \): measuring range, \(c \): the less significant display digit

OUTPUTS

<table>
<thead>
<tr>
<th>Kind of output</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output</td>
<td>• voltageless NO contacts, load capacity: 250 V a.c./0.5 A a.c.</td>
</tr>
<tr>
<td>Analog output</td>
<td>• -20...20 mA, programmable, accuracy: 0.2%</td>
</tr>
</tbody>
</table>

DIGITAL INTERFACE

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Transmission protocol</th>
<th>Mode</th>
<th>Baud rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485</td>
<td>MODBUS RTU and ASCII</td>
<td>BN2, BE1, BS1, BS1, BS1, BS1, 701</td>
<td>4.8, 9.6, 19.2; kbit/s</td>
</tr>
</tbody>
</table>

Example of application WizPar Program
N13 METER OF POWER NETWORK PARAMETERS

External Features
- **Readout field**: 4 x 4 LED digits, brightness control
- **Overall dimensions**: 96 x 96 x 70.5 mm
- **Weight**: 0.4 kg
- **Protection grade**: from frontal side: IP40, from terminal side: IP10

Rated Operating Conditions
- **Supply voltage**: 85...253 V a.c. (40...400 Hz) or d.c.
- **Power input**: in the voltage circuit ≤ 0.5 VA, in the current circuit ≤ 0.1 VA
- **Input signal**:
 - 0...0.01...1.2 ln
 - 0...0.01...1.2 Un
 - 0...0.02...1.2 ln; 0...0.07...1.2 Un for power factors: PF, ηP
 - Frequency: 15...45...65...500 Hz
 - Sinusoidal (THD ≤ 8%)
- **Temperature**: ambient: 0...23...+55°C, storage: -20...+70°C
- **Humidity**: 25...95%
- **Operating position**: any
- **External magnetic field**: 0...40...400 A/m
- **Short duration overload (5 s)**:
 - Voltage input: 2 Un (max 1000 V)
 - Current input: 10 In
- **Admissible peak factor**:
 - Current: 2
 - Voltage: 2
- **Preheating time**: 5 min
- **Additional errors in % of the intrinsic error**:
 - From frequency of input signals: <50%
 - From ambient temperature changes: <50%/10°C

Safety and Compatibility Requirements
- **Electromagnetic compatibility**
 - Noise immunity: acc. to EN 61000-6-2
 - Noise emissions: acc. to EN 61000-6-4
- **Isolation ensured by the casing**: double
- **Isolation between circuits**: basic
- **Pollution level**: 2
- **Installation category**: III
- **Maximal phase-to-earth operating voltage**: 600V
- **Altitude above sea level**: < 2000 m

Ordering

<table>
<thead>
<tr>
<th>N13 -</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>
| Input current:
 - 1 A (X/1) |
 - 5 A (X/5) | 1 |
| Input voltage (phase/phase-to-phase):
 - 3 x 57.7/100 V |
 - 3 x 230/400 V |
 - 3 x 400/690 V | 1 |
| Current analog output:
 - Without analog output |
 - With a programmable output -20...+20 mA | 0 |
| Digital output:
 - Without interface |
 - With RS-485 interface | 0 |
| Display:
 - Red |
 - Green | 1 |
| Version:
 - Standard |
 - Custom-made* | 00 |

Acceptance tests:
- Without extra quality inspection requirements: 8
- With an extra quality inspection certificate: 7
- According to customers' request*: X

Order example: The code: N13 - 2 2 1 1 2 0 0 7 means:
- N13 - meter of network parameters of N13 type
- 2 - Input current: 5 A
- 2 - Input voltage: 3 x 230/400 V
- 1 - Programmable output: -20...+20 mA
- 0 - With RS-485 interface
- 1 - Display: green
- 00 - Standard version
- 7 - With an extra quality inspection certificate.

* after agreeing with the manufacturer

Connection Diagrams
- **Semi-indirect measurement in a four-wire network**

See also:
- Current transformers from 5 A to 6 kA.